Archivo de la etiqueta: redes neuronales

Como salva la linealidad una red neuronal

En los últimos tiempos estoy empeñado en usar redes neuronales para la tarificación en seguros. Históricamente la tarificación de seguros, el pricing, se ha basado en modelos lineales generalizados GLM (sus siglas en inglés) porque su estructura es sencilla, se interpreta bien y no olvidemos que el sector asegurador está regulado y es necesario elaborar una nota detallada de cómo se articula una tarifa y el GLM nos ofrece una estructura multiplicativa que se comprende y con la que los reguladores se sienten muy cómodos. Sin embargo, una red neuronal es el paradigma de "caja negra", ¿cómo podemos saber que hace esa caja negra? Estoy trabajando en ello, la descripción del funcionamiento de las ponderaciones de una red está muy arriba en la lista de mis tareas pendientes.

Pero esta entrada del blog va encaminada a describir de forma como las neuronas de una red neuronal salvan la linealidad y como un mayor número de neuronas son capaces de ajustar mejor a una estructura compleja y si llegamos a describir como funciona esa estructura compleja podremos usar estas técnicas para realizar tarifas de riesgo. 
Como siempre, para ilustrar el funcionamiento se emplea un ejemplo muy sencillo:

#Variable independiente
indep = runif(500,100,3000)
#Función para crear la variable dependiente
foo = function(x){ mean(x)*(1-sin(-0.006042*x)+sqrt(x/100))
}
dep = sapply(indep,foo)

dep=dep+(runif(length(dep),-500,500))

dep = as.matrix(dep)
indep = as.matrix(indep)
plot(indep,dep)

redes_neuronales_tarificacion_seguros1

Creamos unos datos aleatorios que serán en una matriz nuestros datos inependientes y como variable dependiente una variable que dibuja una nube de puntos que simula una curva de observaciones. Si realizamos un modelo lineal se ajustará una recta sobre los datos, una red neuronal mejorará los resultados. Y para demostrarlo vamos a emplear el paquete de R monmlp que realiza un perceptrón multicapa Sigue leyendo Como salva la linealidad una red neuronal

Resolución del juego de modelos con R

Hace mucho planteé un juego de identificación de modelos con R y ya se me había olvidado daros la solución. Pensando en el Grupo de Usuarios de R y en hacer algo parecido en una presentación recordé que había que solucionar el ejercicio. Lo primero es la creación de los datos, se me ocurrió una función sencilla y una nube de puntos alrededor de ella:

#Variable independiente
indep = runif(500,100,500)
#Función para crear la variable dependiente
foo = function(x){ mean(x)*(1-sin(-0.006042*x))
}
dep = sapply(indep,foo)

dep=dep+(runif(length(dep),-100,100))
datos = data.frame(cbind(indep,dep))
plot(datos)

juego_modelos1

Seleccionamos los datos de entrenamiento y test:

#Datos de entrenamiento y test
indices = sample(1:length(dep),length(dep)/2) 
entrenamiento = datos[indices,]
test = datos[-indices,]

El más sencillo de todos era el caso de la regresión lineal y fue el que puse de ejemplo:

#REgresión lineal
modelo.1=lm(dep ~ indep,entrenamiento)
plot(test)
points(test$indep,predict(modelo.1,test),col="red")

juego_modelos2

Una línea que pasa por la media de la nube de puntos. Otro de los casos menos complicados es el árbol de regresión Sigue leyendo Resolución del juego de modelos con R

Medir la importancia de las variables en una red neuronal con R

Sigo a vueltas con esta gran web y hoy vamos a medir la importancia de las variables en una red neuronal. Al igual que sucede en un modelo de regresión los parámetros obtenidos pueden servirnos para determinar la importancia de una variable dentro del modelo. En el caso de una red neuronal los pesos de la red pueden ser utilizados para determinar cómo influye una variable en el modelo. Para ilustrar este tipo de tareas el gran @beckmw realizó esta entrada:

http://beckmw.wordpress.com/2013/08/12/variable-importance-in-neural-networks/

El método que emplea para determinar esta importancia fue propuesto por Garson en 1991 y parte de la idea de buscar todas las conexiones que tiene una variable dentro de una red neuronal y se ponderan para obtener un valor único que describe el grado de asociación de nuestra variable dependiente con cada una de sus regresoras. Garson realizó este método para poder obtener un valor de 0 a 1, pero @beckmw lo ha modificado para que el signo tenga su importancia. La función que ha creado este genio la tenéis en Github

source(url('https://gist.githubusercontent.com/fawda123/6206737/raw/d6f365c283a8cae23fb20892dc223bc5764d50c7/gar_fun.r'))

Por cierto, qué manía tienen algunos con usar devtools. Haciendo sólo:

#Dejamos los nombres de los coeficientes de una forma más adecuada
tr=nnet.fit$coefnames
tr=substr(tr,16,30)
nnet.fit$coefnames=tr

#Pintamos la importancia de las variables
gar.fun('medv',nnet.fit)

Obtenemos el gráfico con el que comienza esta entrada al blog. Ni se os ocurra comenzar a tocar este gráfico con los temas de ggplot2, somos gente productiva. Vemos como a la izquierda del gráfico se sitúan las variables con mayor peso negativo y a la derecha las variables con mayor peso positivo. Podemos eliminar algunas variables y seguramente el comportamiento predictivo del modelo no empeoraría.

Hay que dejar de pensar en las redes neuronales como una caja negra sin sentido. Saludos.

Representación de redes neuronales con R

En la última entrada realizamos un modelo de regresión con redes neuronales. Hoy quería mostraros como representar gráficamente la red neuronal creada en esa entrada. A la modelización con redes neuronales siempre se le ha achacado un comportamiento de “caja negra”, nosotros pasamos unas variables de entrada por una capa oculta y obtenemos una salida. No hay parámetros ni inferencia sobre los mismos, no sabemos lo que hace la red por dentro. En el caso concreto de R y continuando con la entrada anterior  si hacemos summary(bestnn):

a 12-4-1 network with 57 weights
options were - linear output units decay=1e-05
b->h1 i1->h1 i2->h1 i3->h1 i4->h1 i5->h1 i6->h1 i7->h1 i8->h1 i9->h1
-5.61 -3.80 -1.03 0.74 -2.81 2.83 2.37 2.86 6.72 4.68
i10->h1 i11->h1 i12->h1
1.65 0.87 -8.16 Sigue leyendo Representación de redes neuronales con R

Regresión con redes neuronales en R

La última técnica que me estoy estudiando este verano es la regresión con redes neuronales. El ejemplo que os voy a poner es completamente análogo a este: http://heuristically.wordpress.com/2011/11/17/using-neural-network-for-regression/ Vamos a trabajar con el paquete nnet, si dispusiera de tiempo replicaría este ejemplo en otra entrada con neuranet. Para realizar el ejemplo tenemos el conjunto de datos housing que contiene el censo de 1970 de 506 hogares de Boston. Empecemos a trabajar con la consola de RStudio (¡!)

#install.packages("mlbench")
library(mlbench)
data(BostonHousing)
summary(BostonHousing$medv)

Como variable dependiente vamos a emplear el valor mediano de las vivendas ocupadas en dólares.  El primer paso será realizar un modelo de regresión lineal:

lm.fit <- lm(medv ~ ., data=BostonHousing)
lm.predict <- predict(lm.fit)
mean((lm.predict - BostonHousing$medv)^2)

plot(BostonHousing$medv, lm.predict,
main="Regresión lineal",
xlab="Actual")

El ajuste ofrece una suma de cuadrados de 21.9  Vamos a realizar este modelo con redes neuronales Sigue leyendo Regresión con redes neuronales en R

Monográfico. Paquete de R NNET para modelos de redes neuronales

Quiero introduciros a los modelos de redes neuronales con R, mas concretamente quiero acercaros al módulo nnet de R. Tenemos extensa literatura al respecto de las redes neuronales, personalmente considero de lectura obligatoria este link (y prácticamente toda la documentación de este profesor) El paquete nnet nos permite crear redes neuronales de clasificación monocapa. Las redes neuronales clasifican mediante algoritmos o métodos de entrenamiento, en función de estos métodos podemos tener redes supervisadas y redes no supervisadas. Las primeras buscan un límite de decisión lineal a través de un entrenamiento. Las segundas parten de unos parámetros (pesos) fijos y no requieren entrenamiento porque realizan mecanismos de aprendizaje en función de experiencias anteriores. Como ya os he indicado hay mucha bibliografía al respecto y muchas entradas en Google que pueden ayudaros a conocer mejor estos modelos. En el caso que nos ocupa, y como viene siendo tónica habitual de la bitácora, vamos a darle una visión más práctica (tampoco soy yo el más adecuado para dar esa visión teórica). Trabajamos en una gran Caja española y nuestro responsable nos pide realizar una selección de clientes para un mailing. Tenemos que "colocar" planes de pensiones vitalicios inmediatos. A nosotros se nos ocurre realizar un modelo de redes neuronales para seleccionar aquellos clientes con una puntuación más alta y, por tanto, más propensos a comprar el producto.

Como en anteriores ejemplos partimos de un objeto con datos aleatorios que simula la cartera de una entidad bancaria. Queremos determinar que clientes son mas propensos a la contratación de un plan vitalicio de pensión inmediata para seleccionarlos y lanzar una comunicación comercial sobre ellos. Simulamos una cartera de 20.000 Sigue leyendo Monográfico. Paquete de R NNET para modelos de redes neuronales