Archive for the ‘Formación’ Category

Gráfico con eje secundario en ggplot2

miércoles, febrero 13th, 2019

Los gráficos con eje secundario o con dos ejes son un tema que ya he puesto en el blog en varias ocasiones, hay un ejemplo con R que tenía sus problemas y hay un ejemplo con Python y matplotlib que particularmente me gusta por elegancia y sencillez. En esta entrada vamos a repetir el ejercicio y vamos a realizar un gráfico de columnas y líneas con 2 ejes, primario y secundario pero con ggplot2. Este tipo de gráficos son muy utilizados por los actuarios para representar frecuencias o siniestralidades y exposición. Para ilustrar el ejercicio vamos a emplear los mismos datos que usamos en el ejemplo con matplotlib pero vemos paso a paso como realizaríamos el gráfico (más…)

Trucos simples para #rstats

lunes, febrero 11th, 2019

En mi cuenta de twitter suelo poner algunos trucos sencillos de R, cosas que me surgen cuando estoy trabajando y que no me cuesta compartir en 2 minutos, por si puedo ayudar a alguien. Me acabo de dar cuenta que de verdad son útiles y que tenerlos en twitter desperdigados es un problema, así que he pensado en recopilarlos en una entrada del blog para que sea más sencillo buscarlos (incluso para mi). Aquí van algunos de esos trucos (más…)

Muestrear no es pecado

martes, febrero 5th, 2019

Hace unos días que nació la web de Jose Luis Cañadas y ya está añadida a los enlaces de AyD, desde aquí nos hacemos eco de esta nueva bitácora:

https://muestrear-no-es-pecado.netlify.com/

Seguiremos muy de cerca a JL porque es un tipo de esos que merece ser escuchado por como mezcla pragmatismo y rigor dos de las principales características que tienen que tener los científicos de datos y que últimamente están vilipendiadas.

Mapa de México rápido (y sucio) y estático con #rstats

jueves, enero 31st, 2019

No sabía como mostraros el funcionamiento de getData del paquete raster para tener que evitaros ir a GADM y descargar los correspondientes mapas. Bueno, pues se me ha ocurrido hacer una entrada que tenga el menor número de líneas posibles y que genere un mapa. No me lo tengáis mucho en cuenta:

library(ggplot2)
library(raster)
library(dplyr)

#Obtenemos el mapa de GADM
mex <- getData("GADM", country = "MX", level = 2)

#El dato que vamos a pintar
prov <- data.frame(region=unique(mex@data$NAME_2))
prov$aleatorio <- runif(nrow(prov),0,100)

#Creamos el objeto mapa al que le añadimos el dato que necesitamos pintar
mex@data$name = mex@data$NAME_2
mex <- map_data(mex)
mex <- left_join(mex,prov)

#Pintamos el mapa
ggplot(data = mex, aes(x = long, y = lat, group = group)) +
  geom_polygon(aes(fill = aleatorio)) +
  scale_fill_continuous(low="white",high="blue") +
  labs(title = "Quick and dirty") + 
  theme_void()

Ahí lo tenéis getData se conecta a GADM donde vía ISO 3 le decimos que mapa queremos y el nivel que queremos y pintamos un mapa de México con ggplot2 en un pis pas. Comentad si no entendéis algo, hay miles de entradas que hacen lo mismo de forma más detallada pero en menos líneas ninguna. Saludos.

Porque no vamos a cobrar pensiones. Animación con R y pirámides de población

domingo, diciembre 9th, 2018

Estoy creando material para un módulo de un máster que voy a impartir y escribiendo sobre seguros de ahorro he llegado a crear esta animación:

Se trata de una animación con las pirámides de población de España desde 1975 hasta 2018 de 5 en 5 años. El sistema de pensiones español se basa en 5 principios:
1. principio de proporcionalidad
2. principio de universalidad
3. principio de gestión pública
4. principio de suficiencia
5. principio de reparto

La animación va directa contra el principio de reparto. En el sistema español nadie ha cotizado para garantizarse su pensión, los actuales trabajadores pagan las prestaciones de aquellos trabajadores jubilados. Si tras leer estas dos frases y mirar la animación sigues recelando de la migración de personas a España espero que tengas un buen plan de ahorro privado.

Esta animación está hecha con R, los datos están descargados del INE pero están ligeramente cocinados (no al estilo Tezanos). En https://github.com/analisisydecision/wordpress tenéis este Excel con el formato adecuado, el código empleado para realizar la animación está en https://github.com/analisisydecision/wordpress/blob/master/Piramide_poblacional.R Es un buen ejemplo de uso de plotrix y pyramid.plot espero que el código no tenga algún gazapo…

Data management con dplyr

jueves, noviembre 22nd, 2018

Dos años con pandas y sckitlearn y ahora vuelvo a R. Y en mi regreso me propuse comenzar a trabajar con dplyr y mi productividad se está incrementando exponencialmente, creo que dplyr es LA HERRAMIENTA para el manejo de data frame con R, ni me imagino como puede funcionar sparlyr… Para aquellos que estéis iniciando vuestra andadura con R o para los que no estéis acostumbrados a dplyr he hecho una recopilación de las tareas más habituales que hago con esta librería. Se pueden resumir:

• Seleccionar columnas
• Seleccionar registros
• Crear nuevas variables
• Sumarizar datos
• Ordenar datos
• Uniones de datos

Como es habitual trabajamos con ejemplos data(iris); library(dplyr):

Seleccionar columnas select():

two.columns <- iris %>%
select(Sepal.Length,Sepal.Width)

columns = c(“Sepal.Length”,”Sepal.Width”)
two.columns <- iris %>%
select(columns)

Seleccionar registros filter():

setosa <- iris %>%
filter(Species==”setosa”)

species_to_select = c(“setosa”,”virginica”)
species <- iris %>%
filter(Species %in% species_to_select)
table(species$Species)

Crear nuevas variables mutate():

iris2 <- iris %>%
mutate(Sepal.Length.6 = ifelse(Sepal.Length >=6, “GE 6”, “LT 6”)) %>%
mutate(Sepal.Length.rela = Sepal.Length/mean(Sepal.Length))

Sumarizar group_by() summarize():

iris %>% group_by(Species) %>%
summarize(mean.Sepal.Length = mean(Sepal.Length),
sd.Sepal.Length = sd(Sepal.Length),
rows = n())

Ordenar datos arrange():

order1 <- iris %>%
arrange(Sepal.Length)

order2 <- iris %>%
arrange(desc(Sepal.Length))

iris %>% group_by(Species) %>%
summarize(mean.Sepal.Length = mean(Sepal.Length),
sd.Sepal.Length = sd(Sepal.Length),
rows = n()) %>%
arrange(mean.Sepal.Length)

Uniones de datos:

Inner_join():

iris2 <- iris %>%
mutate(id = row_number())

iris3 <- iris2 %>%
filter(Species==”setosa”) %>%
mutate(Sepal.Length.6 = ifelse(Sepal.Length >=6, “GE 6”, “LT 6”)) %>%
mutate(Sepal.Length.rela = Sepal.Length/mean(Sepal.Length)) %>%
select(id,Sepal.Length.6,Sepal.Length.rela)

iris4 <- iris2 %>% inner_join(iris3, by=c(“id”))

Left_join():

iris5 <- iris2 %>% left_join(iris3, by=c(“id”))

anti_join():

iris6 <- iris2 %>% anti_join(iris3)

Aquí tenéis una muestra de las posibilidades de dplyr y como se pueden combinar entre ellas. Creo que la sintaxis es bastante sencilla y se aprende con facilidad, si a mi no me esta costando mucho…

Truco Excel. Transponer una fila en varias columnas con DESREF

domingo, septiembre 30th, 2018

Creo que alguna vez me lo han preguntado. Se trata de tranponer en Excel el contenido de una fila en varias columnas, como es habitual (sobre todo si escribo yo) una imagen vale más que mil palabras:

Transponer varias columnas

En este caso se trata de pasar de una fila a 3 columnas por lo que se trata de que la función DESREF tiene que moverse en función del elemento que va a transpone. En este caso empezando desde A1 tenemos que generar un autonumérico para las columnas que se ha de mover de 3 en 3 por lo que multiplicaremos por 3 y sumaremos la columna:

Para el primer elemento: =DESREF($A$1;0;(FILA(A1)-FILA($A$1))*3)
Para el segundo elemento: =DESREF($A$1;0;(FILA(B1)-FILA($A$1))*3+1)
Para el tercer elemento: =DESREF($A$1;0;(FILA(C1)-FILA($A$1))*3+2)

Ya lo veis, se mueve de 3 en 3 la columna 0 el primer elemento la 1 el segundo y el 2 el tercero.

Aprende Pyspark sin complicaciones

viernes, septiembre 7th, 2018

Hace tiempo un gran data engineer me preparó una máquina virtual para hacer “pinitos” con pyspark y llevaba tiempo pensando en como poder publicar trucos y ejemplos con pyspark sin necesidad de máquinas virtuales y empleando notebooks. Ya he encontrado la mejor manera, los contenedores de docker. Cuanto más profundizo en docker más me gusta trabajar con contenedores y con esta entrada me váis a entender perfectamente.

El primer paso es instalar docker y arrancar el terminal. La idea de docker es ejecutar un contenedor en cualquier máquina independientemente del sistema operativo. Instalar spark en windows es un dolor de cabeza, si disponemos de una máquina virtual con linux es más sencillo, pero imaginad que, con dos líneas de código ya podéis trabajar con un notebook y pyspark, pues eso lo podemos hacer con docker.

Descargado e instalado docker abrimos el terminal de docker y hacemos pull sobre un contenedor, en este caso yo recomiendo:

docker pull jupyter/all-spark-notebook

Estamos descargando contenedores con pyspark y notebook, cuando el proceso haya finalizado (unos 5GB) en el terminal de docker podéis ejecutar:

docker images

Y podréis ver jupyter/all-spark-notebook con lo cual ya tenéis disponible un contenedor con un notebook que nos permite ejecutar pyspark. Ahora tenemos que arrancar el servicio (más…)

Truco Python. Seleccionar o eliminar variables de un data frame en base a un prefijo, sufijo o si contienen un caracter

martes, mayo 22nd, 2018

A la hora de seleccionar las características de un data frame es posible que nos encontremos con la necesidad de seleccionar o eliminar características del data frame y que el nombre de esas características tenga un determinado patrón. Esta labor la podemos realizar mediante selección de elementos en listas, en esta entrada del blog vamos a tener 3 tipos de selecciones:

1. Seleccionar o eliminar aquellas variables que empiezan por un determinado prefijo
2. Seleccionar o eliminar aquellas variables que contienen una cadena de caracteres
3. Seleccionar o eliminar aquellas variables que finalizan con un sufijo

Para ilustrar este trabajo generamos un data frame con datos aleatorios y 10 columnas:

import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.randint(0,100,size=(100, 10)),
columns=['A1','A2','A3','B1','B2','B3','C1','C2','C3','DA'])

El primero de los filtros a realizar es identificar que variables de nuestro data frame contienen el string ‘A’:

col = list(df.columns)
#Filtro 1: Columnas que tienen una A
filtro1 = [col for col in df if col.find('A')&gt;=0]
#Eliminar
df1_drop = df.drop(columns=filtro1)
#Seleccionar
df1_keep = df[filtro1]

Siempre vamos a hacer el mismo proceso, las características de nuestro data frame irán en una lista, después recorremos la lista y seleccionamos aquellos donde el método .find(‘A’) sea mayor o igual a 0, con esto hemos creado una sublista con aquellas características que tienen el string ‘A’ mediante .drop(columns=) eliminamos del data frame los elementos contenidos en una lista (más…)

Truco Python. Agrupar variable en función de la frecuencia

viernes, mayo 18th, 2018

Me ha surgido la necesidad de crear una nueva variable en un data frame a partir de la frecuencia de otra, es decir, quedarme con los valores más frecuentes y aplicar una categoría resto para aquellos valores que no estén en los más frecuentes. Para realizar esto se me ha ocurrido la siguiente función en Python:

def agrupa_frecuencia (var_origen, var_destino, df, grupos, valor_otros):
df_grp= df[var_origen].value_counts()
list_grp = list(df_grp.iloc[0:grupos,].index)
df[var_destino] = df[var_origen].map(lambda x: x if x in list_grp else valor_otros, na_action='ignore')

Es una función con más parámetros que líneas, pero necesitamos una variable de origen, una variable de destino que será la que calcularemos, el data frame sobre el que realizamos la tarea, el número de grupos más otro que será el “resto” y dar un valor a ese “resto”. La función lo que hace es una tabla de frecuencias ordenada descendentemente con .value_counts() y creamos una lista con el número de grupos que deseamos. Por último mediante lambdas si la variable origen está en la lista generada anteriormente le asignamos el mismo valor, en caso contrario asignamos el valor “resto”. Es una programación sencilla, seguramente haya una función específica en sckitlearn para agrupar variables en base a la frecuencia, pero no la he encontrado y he tardado más en buscarla que en hacerla.

Como es habitual os pongo un ejemplo de uso para que podáis ver como funciona:

personas = 1000
grupo = pd.DataFrame(np.random.poisson(15,personas))
grupo['clave']=0
valor = pd.DataFrame(np.random.uniform(100,10000,personas))
valor['clave']=0
df = pd.merge(grupo,valor,on='clave')
del df['clave']
df.columns = ['grupo', 'valor']
df['grupo'].value_counts()

Vemos que grupo crea muchos valores y vamos a agrupar la variable del data frame de forma que los 10 más frecuentes toman su valor y los demás serán un resto:

agrupa_frecuencia('grupo', 'grupo_nuevo', df, 10, 99)
df['grupo_nuevo'].value_counts()

Parece que funciona, si mejoráis, actualizáis o encontráis pegas…